Zeta Functions for Curves and Log Canonical Models
نویسنده
چکیده
The topological zeta function and Igusa's local zeta function are respectively a geometrical invariant associated to a complex polynomial f and an arithmetical invariant associated to a polynomial f over a p{adic eld. When f is a polynomial in two variables we prove a formula for both zeta functions in terms of the so{called log canonical model of f ?1 f0g in A 2. This result yields moreover a conceptual explanation for a known cancellation property of candidate poles for these zeta functions. Also in the formula for Igusa's local zeta function appears a remarkable non{symmetric`q{deformation' of the intersection matrix of the minimal resolution of a Hirzebruch{Jung singularity.
منابع مشابه
New Non-Abelian Zeta Functions for Curves over Finite Fields
In this paper, we introduce and study two new types of non-abelian zeta functions for curves over finite fields, which are defined by using (moduli spaces of) semi-stable vector bundles and non-stable bundles. A Riemann-Weil type hypothesis is formulated for zeta functions associated to semi-stable bundles, which we think is more canonical than the other one. All this is motivated by (and hence...
متن کاملElliptic curves, Hilbert modular forms, and the Hodge conjecture
1.2. The first result of this type is due to Eichler ([E]) who treated the case where f = f11 is the unique weight 2 newform for Γ0(11) and E is the compactified modular curve for this group. Later, in several works, Shimura showed that the Hasse-Weil zeta functions of special models (often called canonical models) of modular and quaternionic curves are, at almost all finite places v, products ...
متن کاملThe Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7
Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...
متن کاملLog Canonical Models for the Moduli Space of Curves: First Divisorial Contraction Brendan Hassett and Donghoon Hyeon
In this paper, we initiate our investigation of log canonical models for (Mg, αδ) as we decrease α from 1 to 0. We prove that for the first critical value α = 9/11, the log canonical model is isomorphic to the moduli space of pseudostable curves, which have nodes and cusps as singularities. We also show that α = 7/10 is the next critical value, i.e., the log canonical model stays the same in th...
متن کاملLog Minimal Model Program for the Moduli Space of Stable Curves of Genus Three
In this paper, we completely work out the log minimal model program for the moduli space of stable curves of genus three. We employ a rational multiple αδ of the divisor δ of singular curves as the boundary divisor, construct the log canonical model for the pair (M3, αδ) using geometric invariant theory as we vary α from one to zero, and give a modular interpretation of each log canonical model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997